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Abstract

Soil water is confined behind the menisci of its water-air interface. Catchment-scale
fluxes (groundwater recharge, evaporation, transpiration, precipitation, etc.) affect
the matric potential, and thereby the interface curvature and the configuration of the
phases. In turn, these affect the fluxes (except precipitation), creating feedbacks be-5

tween pore-scale and catchment-scale processes. Tracking pore-scale processes be-
yond the Darcy scale is not feasible. Instead, for a simplified system based on the
classical Darcy’s Law and Laplace-Young Law we i) clarify how menisci transfer pres-
sure from the atmosphere to the soil water, ii) examine large-scale phenomena arising
from pore-scale processes, and iii) analyze the relationship between average meniscus10

curvature and average matric potential. In stagnant water, changing the gravitational
potential or the curvature of the air-water interface changes the pressure throughout
the water. Adding small amounts of water can thus profoundly affect water pressures in
a much larger volume. The pressure-regulating effect of the interface curvature show-
cases the meniscus as a pressure port that transfers the atmospheric pressure to the15

water with an offset directly proportional to its curvature. This property causes an ex-
tremely rapid rise of phreatic levels in soils once the capillary fringe extends to the soil
surface and the menisci flatten. For large bodies of subsurface water, the curvature
and vertical position of any meniscus quantify the uniform hydraulic potential under hy-
drostatic equilibrium. During unit-gradient flow, the matric potential corresponding to20

the mean curvature of the menisci should provide a good approximation of the intrinsic
phase average of the matric potential.

1 Introduction

Unsaturated porous media can generally be described by the configurations of the
solid, liquid, and gas phases. When we exclude physical rearrangement of the solid25

phase by such mechanisms as land slides, erosion/sedimentation, soil tillage, root
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growth, animal burrowing, etc., the solid phase is largely rigid, although organic matter
and the configuration of clay particles in swelling and shrinking soils can vary, and
some elastic deformation will occur. The liquid phase has a volume that depends only
minimally on pressure, while the gas phase is fully expandable. Natural conditions
often lead to situations where the liquid phase in an extended area (a field of several5

hectares or a catchment of several square kilometers) is confined behind its solid-liquid
and liquid-gas interfaces, possibly with enclosed pockets of the gas phase trapped
within it. The mobility of the gas-liquid interface nevertheless allows ample movement
of and exchange between subsurface and atmospheric water through infiltration and
evapotranspiration. Still, the bulk of the gas phase is above the bulk of the liquid phase,10

and most of the gas phase is generally well-connected to the atmosphere.
In soils, the potential energy of the soil solution governs such catchment-scale fluxes

as groundwater recharge, transpiration, and evaporation. In return, exchanges of wa-
ter between the soil and the groundwater, and between the soil and the atmosphere
(directly or via the vegetation) affect the energy status of the soil solution, which is15

evidenced in the wide variation of the matric potential with time. Changes in the ma-
tric potential cause changes in the curvature of the menisci, and through this curvature,
the configuration of liquid and gas in the pore space. Thus, large-scale processes such
as rainfall and evapotranspiration from vegetated areas interact with pore-scale water
distribution and meniscus curvatures.20

The relationship between the liquid-gas interfaces in pores and the overall energy
status of the soil solution on the field scale and larger scales merits attention. The in-
teraction between the architecture of the pore space, the curvature of the menisci, the
distributions of the phases, and the potential energy status of the soil solution leads to
some intriguing phenomena at the field scale and larger scales. Among the most well-25

known of this is the extreme response of the hydraulic head and the discharge genera-
tion in fine-textured soils to rainfall: a small amount of rainfall can cause a groundwater
level rise that is much larger than is to be expected from the soil’s porosity (e.g., Rosen-
berry and Winter, 1997; Sklash and Farvolden, 1979). Zehe et al. (2006) were among
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the first to attempt to quantify and interpret the potential energy of bodies of subsurface
water at the catchment scale by volume-integrating local values. They postulated that
the volume-averaged unsaturated zone pore water matric potential should reflect the
pressure drop over the gas-liquid interface averaged over the unsaturated zone of an
entire catchment, thereby implying a very direct link between the two.5

Among the most comprehensive treatments of the interaction between the various
phases, their interfaces, and the contact lines between the interfaces, is the thermo-
dynamic analysis by Hassanizadeh and Gray (1990). The analysis produces 28 equa-
tions and unknowns, and moves from the pore scale to the Darcian scale (in the order
of several hundreds of pore diameters). Hassanizadeh and Gray (1990) demonstrated10

that the generally accepted proportionality between the curvature of a meniscus and
the pressure jump across it is only valid at equilibrium. They also offered a modified
version of Darcy’s Law that accounts for the masses and energies of the interfaces in
situations where these move and deform rapidly. The analysis targets the Darcy scale,
but most issues of societal interest arise at the much larger field and regional scales15

that are the focus of this paper.
Gray and Hassanizadeh’s (1990) full analysis is difficult to carry out beyond the Darcy

scale. Even at the Darcian scale it is not (yet?) feasible to measure the areal density
and other properties of the interfaces, and at the larger scales that we focus on, it
may likely never be possible. Therefore, the development of a full analysis at the scale20

of aquifers, fields, or catchments is forfeited here. Instead the system is simplified to
a degree that still allows several natural phenomena at these larger scales to be ex-
plained and upscaling issues to be addressed. The three phases and their interactions
are simplified according to Sposito (1981), which implies that all phases are uniform
in composition and do not mix or react with one another. Furthermore, we consider25

an isothermal system with a rigid solid phase, an inelastic liquid phase, and a con-
tinuous gas phase (no entrapped soil air unless stated otherwise). The three surface
tensions are assumed constant, and flows are slow enough to make the kinematic en-
ergy negligible. The potential energy of the liquid at any location is assumed to be fully

6494

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/6491/2010/hessd-7-6491-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/6491/2010/hessd-7-6491-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 6491–6523, 2010

Menisci, pressures,
and potentials

G. H. de Rooij

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

quantified by its gravitational potential and its pressure potential (below the phreatic
level) or matric potential (between the soil surface and the phreatic level). The formal
unit for potential energy is J kg−1 (potential energy per unit mass), but for clarity the po-
tential energy per unit volume is used here (J m−3=Pa). As Sposito (1981) points out,
these definitions are interchangeable, and the potential should not be considered a true5

pressure, even if it has the same dimensions. In the following, the terms “potential” and
“potential energy” refer to the volume-based quantities unless stated otherwise. For ac-
tual liquid or gas pressures the term “pressure” is used; potentials expressed in units
of pressure carry the qualifier “potential” (e.g., pressure potential). An important differ-
ence is the absolute nature of pressure (cannot be negative) and the relative nature of10

the pressure potential and matric potential, both of which equal zero when the liquid
is at atmospheric pressure. Matric forces make the matric potential negative, so we
deploy the potential instead of pressure when discussing situations in which negative
pressures could otherwise occur.

In view of the simplifying assumptions, the use of the Laplace-Young Law (e.g., Brut-15

saert, 2005; Jury et al., 1991; Or and Wraith, 2000) is permitted to determine the
pressure jumps across the liquid-gas interfaces:

∆Plg =γlg

(
1
r1

+
1
r2

)
, (1)

with ∆Plg (Pa) the positive pressure jump from the wetting to the non-wetting phase, γlg

(N m−1) the liquid-gas surface tension, and r1 and r2 (m) the principle radii of curvature20

of the interface. Similarly, flow is described by the classical form of Darcy’s Law. The
use of these classical equations restricts the analysis at this time to problems in which
the energy changes and movements of the interfaces are negligible, i.e., saturated
flows or unsaturated flows in which the liquid-gas interfaces move only slowly. This
is in line with Roth’s (2008) finding that phenomena with small characteristic times25

(e.g., infiltration fronts) lend themselves poorly to upscaling. Furthermore, we will not
consider the forces exerted upon the soil solution by the porous matrix, such as Van
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der Waals forces and hydrogen bonds, other than through their combined effect as
expressed in the matric potential.

The objectives of this paper are i) to clarify the role of menisci in transferring pressure
from the atmosphere to subsurface water; ii) to explore the consequences at the field
and the catchment scale of the pore-scale behavior of the interfaces for a number of5

cases of practical interest; and iii) to examine the relationship between the volume-
averaged potential energy of subsurface bodies of water and the curvatures of the gas-
liquid interfaces, thereby advancing and refining the analysis by Zehe et al. (2006).
The response of the pressure potential to addition or removal of water will be treated
in some detail. To arrive at large-scale expressions, local quantities are frequently10

volume-averaged. Terms such as “average” and “averaging” used below are implied to
refer to volume-averaging over volumes of subsurface water, unless otherwise stated.

2 Theory

2.1 Hydrostatic pressure potential below a liquid-gas interface

In soils, the capillary fringe above the phreatic level is defined here as the region where15

all pores, except macropores like cracks and biopores, are liquid-saturated (except for
possible pockets of enclosed air). Thus, the capillary fringe extends to the depth where
the largest capillary pore empties and a continuous path of soil gas extends from that
pore to the atmosphere. The elevation of the liquid-gas interface of that pore, and thus
of the top of the capillary fringe is denoted xlg [L]. For a continuous liquid phase below20

the top of the capillary fringe in a satiated porous medium, the pressure at hydrostatic
equilibrium is given by:

P (x3)=ρg
(
xlg−x3

)
+Patm±γlg

(
1
r1

+
1
r2

)
, (2)
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with x3 (m) the vertical coordinate (positive upwards), P (Pa) the pressure in the liquid,
Patm (Pa) the gas pressure above xlg, ρ (kg m−3) the density of the liquid phase, and

g (m s−2) the gravitational acceleration. The sign before the last term is positive for
non-wetting liquids (in which case the capillary fringe does not exist) and negative
for wetting liquids. If a small quantity of water dV [m3] is added or removed and xlg5

changes as a result, we have:

dP (x3)

dV
=ρg

dxlg

dV
±γlg

d
dV

(
1
r1

+
1
r2

)
=ρgA−1

lg ±γlg
d
dV

(
1
r1

+
1
r2

)
, (3)

where Alg (m2) is the liquid-occupied horizontal area at xlg. Thus, the pressure change
in the liquid phase is equal to the change in gravitational potential of the water at the
liquid-gas interface plus its pressure change caused by changes in the curvature of the10

interface.
From Eq. (3) it follows that the pressure at an arbitrary depth in a vertical liquid-filled

column with a cross-sectional area of A m2 (open at the top; Fig. 1a) can be reduced
by ρg∆L Pa by removing ∆LAm3 of liquid (with ∆L [m] the height of the removed liquid
layer). If the column is completely filled and then closed at the top by a lid perforated15

by a wettable capillary tube with radius r (m) and a capillary rise of ∆L (m), a meniscus
develops in the capillary, and the pressure also drops by ρg∆L Pa (Fig. 1b). To return
the pressure to its original value, ∆Lπr2 m3 of liquid needs to be added to raise the
liquid level in the capillary by ∆L m. If the capillary only extends downward into the
liquid but does not extend above the lid (Fig. 1c), the pressure at any depth below the20

interface can be increased again by ρg∆L Pa by adding the minute amount of liquid (at
most 2πr3/3 m3, for a contact angle of zero) that suffices to flatten the curved liquid-gas
interface at the top of the capillary.

Thus, it is possible to effect similar pressure changes in the column by adding or re-
moving zero, minute, sizeable, or large volumes of liquid. In the case of zero additional25

liquid, the interface was changed from flat to curved, in the case of minute addition,
from curved to flat, for a sizeable addition, the interface remained curved but moved,
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and for the large added volume, the interface remained flat but moved. This reveals
the two mechanisms by which the pressure in a static liquid column can be manipu-
lated: by changing the height of the liquid column, or by changing the curvature of the
interface. (An obvious third method would be to change the pressure in the gas phase
above the column.)5

The sometimes very substantial changes in the potential energy of large bodies of
liquid caused by adding or removing small quantities of liquid seem to suggest that
energy is added and dissipated in quantities that are only determined by the volume of
liquid experiencing these changes in pressure potential, not by the possibly very much
smaller volume of liquid that brings these changes about. It should be noted that in all10

cases discussed above the potential energy of the liquid at the interface is changed,
either by a change in the position of the interface in the gravitational field (affecting
the gravitational potential), a change in the interface curvature (affecting the pressure
potential), or both. To restore hydrostatic equilibrium after such a perturbation, the
potential energy of the rest of the liquid must follow suit. Since the location of the liquid15

is fixed, only the matric/pressure potential is available to accommodate the required
change.

Pressure changes thus serve as signal carriers that convey and effectuate changes
in hydraulic potential throughout a body of liquid in a fixed position. How effectively
the increased potential energy can be converted to work depends on the geometry20

of the vessel or the porous medium in the vicinity of xlg. According to Eq. (3), if the
increased pressure in a body of liquid results in a displacement of liquid out of its
original confines (e.g., by flow through a confining layer into another aquifer, or flow
into a well, or water trickling through a leak in a vessel wall caused by the increased
pressure), the pressure will drop inversely proportionally to the liquid-filled horizontal25

cross-section at the position of the liquid-gas interface if the curvature of the menisci
remains the same. For small Alg, the pressure drop will be large enough to rapidly
diminish the pressure gradients that drive the flow. This too is consistent with the
change of the gravitational potential of the liquid at the receding liquid-gas interface and
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the transfer of the changing hydraulic potential at the interface throughout the liquid.
Similarly, if the liquid displacement is minute but sufficient to change the curvature of
the interface, the pressure throughout the liquid will be affected predominantly through
the second term of Eq. (3). As a practical example, relatively rapid pressure changes
as a result of water extractions can occur in a confined aquifer with a small phreatic5

intake area, where the aquifer’s only air-water interface exists. Such an aquifer can
only sustain small transfers of water to a deeper aquifer before the hydraulic potential
drops to equilibrium with the neighbor and flow ceases. And if the aquifer over some
extent is artesian, too many artesian wells may cause the hydraulic head to drop below
the soil surface and the wells will then run dry.10

The interpretation of Eq. (3) in a porous medium is more problematic than for open
water. In the following, the water below a phreatic level at some vertical position xp
(m) is termed groundwater, that above xp soil water or soil solution. The groundwater
at any depth rests upon water below it, as in the vessel discussed above, creating an
overburden pressure there. The water above xp can be viewed as hanging from its15

menisci at the top of the capillary fringe. Although its pressure potential still contin-
uously drops with elevation in the same fashion as the groundwater, it is pushed up
into the capillaries by the pressure in the non-wetting gas phase. At equilibrium, the
curvatures of the menisci are such that the resulting subatmospheric pressure exactly
cancels the overburden pressure of the soil water and thus does not add an overburden20

pressure to the groundwater. Since only the water below xp contributes to the pres-
sure potential in the groundwater, a change in the pressure potential typically requires
a change in xp for the near-equilibrium conditions that tend to prevail in aquifers. This
can be accomplished by inducing a downward flow through the capillary fringe, or by
supplying water from below (e.g., from infiltration drains or a deeper aquifer). For the25

trivial case of a very coarse matrix (gravel) without significant capillary fringe and vir-
tually no water present above xp, the liquid-gas interface is at xp, and Alg represents
the horizontal cross-section of the pore space, which will be equal to the porosity when
expressed as a fraction of the area. The more realistic case of fine-textured media is
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considerably more complicated and treated in various illustrative cases below.

2.2 The role of menisci

The liquid-gas interface of a body of subsurface water consists of a multitude of
menisci. This interface can be viewed as a port that passes on the pressure signal
from the atmosphere to the liquid phase with an offset determined by the direction and5

magnitude of the curvatures of the interfaces, which in turn depend on the pore archi-
tecture, the various surface tensions, which determine the wetting angle (Koorevaar et
al., 1983), and the detailed liquid-gas configuration (the degree of wetting of the pore
walls). If the gas phase is well connected to the atmosphere, the reservoir providing
the gas pressure effectively consists of the atmosphere of the entire planet.10

The liquid-gas interface essentially is a one-way port: the atmosphere modifies the
pressure in the liquid phase, but not the other way around. This has various reasons:
the sheer size of the Earth’s atmosphere makes the effect of water movement in the
lithosphere below it inconsequential for the atmospheric pressure. Furthermore, the
volume of the soil and the groundwater solution hardly changes with pressure. Thus,15

considerable pressure changes brought about by changes in interface curvatures lead
to minute volume changes of those solutions, and therefore do not influence the volume
that the gas phase needs to occupy in the subsurface. An already very large gas
reservoir therefore only experiences insignificant volume changes, leading to negligible
pressure changes.20

Below the interface, the liquid phase superimposes upon this prescribed pressure
potential at the interface its own hydrostatic pressure/matric potential at hydrostatic
equilibrium (Eq. 2) or its hydrodynamic potential field during flow. In deep aquifers with
slow flow, the observed pressure potential field will deviate little from the pressure po-
tential distribution at hydrostatic equilibrium, but in regions of high flow (near pumping25

wells in aquifers, and near the soil surface during infiltration), the deviations can be
substantial. In case the infiltration occurs in a dry soil, the degree of saturation and
the shape and positions of the air-water interfaces change very rapidly, and this case
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is therefore outside the scope of the analysis presented here.
In the unsaturated zone, the larger pores are filled with air (with the soil solution

possibly present as a film on the pore walls), while smaller pores can be entirely filled
with water. In very dry soils water is predominantly present in pendular rings around
the contact point between soil particles and possibly in liquid films on the solid particle5

surfaces. Soil solution films in dry soil experience different forces that the solution
behind a meniscus in filled capillaries. Therefore the degree of curvature of their liquid-
gas interfaces not only depends on the liquid-gas surface tension, but also on the
matric forces acting upon the water molecules. The matric potential may still be an
adequate vehicle for describing the energy status of the soil solution in those films,10

but the relationship between pressure and gas-liquid interface curvatures becomes
ambiguous (Iwata et al., 1995). The energy status and flow-conducting properties of
these water films are less easily defined than those of water sufficiently far away from
the solid surface to be free of matric forces.

In saturated small pores and pendular rings, there is little if any flow (often driven by15

condensation and evaporation at the interface). The matric potential in these pockets
of water is entirely governed by the air-water interface. Its curvature determines the
matric potential directly behind the interface and – through the hydrostatic equilibrium
– anywhere else in the body of water at a sufficient distance from the solid phase to
be unaffected by any forces it exerts on the water molecules. For a hypothetical pore20

with a single exit in which the meniscus is located (Fig. 2), the intrinsic phase average
(Whitaker, 1986, see below) of the matric/pressure potential when no flow occurs is:

〈ψm〉l =
∞∫
−∞
A(x3)

[(
Pg−Patm±∆Plg

)
+ρg

(
x∗3−x3

)]
dx3

( ∞∫
−∞
A(x3)dx3

)−1

= Pg−Patm±∆Plg+
∞∫
−∞
A(x3)ρg

(
x∗3−x3

)
dx3

( ∞∫
−∞
A(x3)dx3

)−1 (4)

where 〈ψm〉l (Pa) is the intrinsic phase average matric potential in the pore, x∗3 (m)
is the vertical position of the meniscus, A(x3) (m2) is the horizontal liquid-filled cross-25
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section of the pore at x3, Pg (Pa) is the pressure in the gas phase immediately in
front of the interface (often equal to Patm), and ∆Plg is given by Eq. (1). For wetting
liquids ∆Plg acquires a minus sign, for non-wetting liquids a plus sign. It is interesting
to note that the liquid pressure behind the interface affects and even determines the
matric/pressure potential everywhere in the pore, but yet the average matric potential5

is determined by both the liquid pressure behind the interface and the geometry of the
pore.

For a pocket of liquid enclosed by multiple liquid-gas interfaces, the pressure in the
surrounding continuous gas phase will differ much less between the menisci than the
liquid pressure because of the density contrast. In the pore system the menisci will10

be located in places where the curvatures allowed by the pore geometry and contact
angles produce pressure jumps that vary with position of the menisci according to:

∆Plg(x3)=∆Plg(x∗3)±
(
ρ−ρg

)
g
(
x3−x∗3

)
≈∆Plg(x∗3)±ρg

(
x3−x∗3

),
(5)

where x∗3 (m) now is the vertical position of a reference meniscus for which the pressure
jump is known and ρg (kg m−3) is the density of the gas phase (assumed constant over15

the vertical extent of the pocket of liquid). The signs of the second terms are positive
for wetting liquids and negative for non-wetting liquids. Equation (4) still holds for this
case, as long as the liquid is stagnant. Any interface with a known pressure jump can
serve as the reference interface that defines x∗3.

The pocket of liquid for which Eq. (5) describes the pressure jumps at its interfaces20

is in principle unlimited in size, as long as the gas phase is continuous. The body
of liquid can therefore be conceived to be the entire connected body of subsurface
water in a catchment (groundwater and the soil solution), with the menisci obviously
only present between the soil surface and the top of the capillary fringe. Equation (5)
does not apply to menisci enclosing entrapped air bubbles because the gas pressure25

inside these bubbles is not determined independently from the menisci but the result of
the interplay between the amount of gas, liquid pressure, pore space architecture, and
interfacial tensions.
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Particularly in the unsaturated zone (for which it is most relevant), the assumption of
hydrostatic equilibrium will limit the direct application of Eq. (5) to such large scales.
If the matric potential field is known, Eq. (5) can be generalized for non-equilibrium
conditions:

∆Plg(x)=∆Plg(x∗)−ψm(x)+ψm(x∗), (6)5

where x(m) is the location vector, ψm (Pa) is the matric potential, and x∗ (m) denotes
the location of the reference meniscus. (For clarity, only the version for wetting liquids
is given.)

2.3 Averaging potentials

The values of the matric or pressure potential and the gravitational potential at a point10

are well defined, but if one is interested in the average potential energy of non-zero
liquid volumes, these point values need to be volume-integrated and averaged. Several
methods have been applied. Zehe et al. (2006) used direct volume-averaging:

〈ψ〉V =
1
V

∫
V

ψdV , (7a)

where ψ (Pa) can represent the gravitational, matric/pressure or hydraulic potential,15

and V (m3) is the averaging volume within the porous domain (in the case of Zehe et
al., 2006, V is the subsurface volume of an entire catchment). Whitaker (1986) only
considered the volume of the phase of interest within the averaging volume and defined
the phase average of the potential as:

〈ψ〉= 1
V

∫
Vl

ψdV , (7b)20

where the integration is only carried out over the volume occupied by the phase of
interest within V . Since we are interested here in the liquid phase this volume is de-
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noted by Vl (m3). Whitaker (1986) also defined the intrinsic phase average, in which
the averaging is performed over Vl only:

〈ψ〉l =
1
Vl

∫
Vl

ψdV . (7c)

At the pore-scale, where the distributions of the solid, liquid, and gas phases are
known, integration of ψ Vl in Eqs. (7b and 7c) can be achieved by integrating over5

V while including in the integrand an indicator function that assumes the value of one
in locations within Vl and zero elsewhere. The volume Vl in Eq. (7c) equals the volume
integral of that indicator function over V . At the field and catchment scales, the con-
tinuum approach (Bear and Bachmat, 1991) is invoked. In that case, to arrive at the
phase average, the local value of ψ needs to be multiplied by the local volume fraction10

occupied by its phase, which is the volumetric water content θ for the liquid phase. The
resulting expression for the phase average is:

〈ψ〉= 1
V

∫
V

θψdV . (7d)

The intrinsic phase average then becomes:

〈ψ〉l =
∫
V θψdV∫
V θdV

. (7e)15

Equation (7a) suffers from undefined values of ψ outside Vl when applied to the pore
scale (for which Zehe et al., 2006, did not intend it to be used). Only when ψ is
set to zero outside Vl does its value there not influence the value of the volume inte-
gral. Equation (7a) then becomes equivalent to the phase average (Eq. 7b), because
the indicator function has the same effect. When applied to the field and catchment20

scale (its intended application), Eq. (7a) weighs every local value of the potential in the
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solid-liquid-gas continuum equally, irrespective of the local water content. As a conse-
quence, Eq. (7a) does not satisfy Gray’s (2002) additivity property that ensures that the
potential energy is conserved during the volume averaging, and is therefore not rec-
ommended. The inability of Eq. (7a) to conserve potential energy can be illustrated by
volume-averaging the gravitational potential energy of the water in a vertical soil column5

of area A extending between heights −∆x3 to 0. Irrespective of the water distribution
in the column, its average gravitational potential will be calculated as −ρg∆x3/2 J m−3,
which obviously is only true if the vertical soil water distribution is symmetrical around
−∆x3/2.

The expressions for the phase average (Eqs. 7b and 7d) and intrinsic phase average10

(Eqs. 7c and 7e) both satisfy the conservation property, even though the numerical
values of the spatial averages will differ. The phase average expresses the potential
energy as Joule per volume for the entire averaging volume V , while the intrinsic phase
average gives the potential energy per volume over the smaller volume Vl, with its value
correspondingly higher. When the respective averages are multiplied by the volumes15

for which they hold, they yield the same numerical value of potential energy in Joules.
When ψ is uniform over Vl, the intrinsic phase average 〈ψ〉l will be equal to the local
value ψ , which is an attractive property that makes the intrinsic phase average the
most representative of the three averages of the conditions in the phase of interest
(Whitaker, 1986).20

The above volume integrations are all carried out for potentials expressed as poten-
tial energy per volume (Pa), and therefore weighting by volume is appropriate. For po-
tentials expressed by mass (J kg−1) or weight (potential head, m), the weighting needs
to be adjusted accordingly. The corresponding expressions for the intrinsic phase av-
erages are given below (compare e.g., Gray, 2002, Eq. 5e). Expressions for the phase25

average are analogous. Note that the various expressions are equivalent if the phase
density and the gravitational acceleration are uniform within V .

〈µ〉l =
∫
V θρµdV∫
V θρdV

. (8a)
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Here, µ (J kg−1) denotes the potential expressed per unit mass. When the potential
head is used instead, the correct expression is:

〈H〉l =
∫
V θρgHdV∫
V θρgdV

, (8b)

where H denotes the hydraulic head (m) and can be replaced by the matric head h or
the gravitational head x3.5

3 Illustrative cases and large-scale consequences

3.1 Rapid rise of groundwater levels during rainfall

In fine-textured soils, a fully saturated capillary fringe can extend over several decime-
ters above xp. Above the capillary fringe, the largest pores are filled with air, but most
of the pores space is still filled with water. This is the equivalent of the water vessel10

with the narrow tube on top (Alg small, curved liquid-gas interface, Fig. 1b) discussed
in the Theory section. A small amount of rainfall suffices to saturate the pore space
over a much larger vertical extent than the equivalent water layer of the rainfall, and
xp as well as the capillary fringe shoot upward (e.g., Seibert et al., 2003). For soils
with xp only a few decimeters deeper than the height of the capillary fringe, most of15

the pore space below the soil surface is water-saturated. As a consequence, the rising
capillary fringe may extend to the soil surface, causing saturation-excess overland flow
(see observations by van der Velde et al., 2010, among others). The menisci at the soil
surface can no longer go up and can only flatten (Fig. 3). The pressure increase by
adding a water layer then combines with the reduction of the curvature of the menisci20

to make xp rapidly rise to the soil surface, even though the phreatic level prior to rainfall
may have been decimeters below the soil surface.

Table 1 illustrates the magnitude of this effect for hypothetical hydrophilic soils with
capillaries of uniform radius. The table gives the amount of water needed to let the
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matric potential at the soil surface go from the air entry value to zero, thereby bringing
the phreatic level to the soil surface. The air-entry value is calculated as −∆Plg from
Eq. (1) for a zero contact angle between solid and liquid. Under hydrostatic equilibrium,
with the soil surface being at the air-entry value, the phreatic level xp would be at
∆Plg/ρg m below the soil surface. For fine-textured soils, the minute amount of water5

needed to bring the phreatic level to the soil surface is even smaller than for coarse soils
(3rd column of Table 1), yet the matric head jump ∆Plg/ρg that it causes (2nd column)
is much larger and occurs much faster (4th column). Since fine-textured soils have
the most extensive capillary fringes (2nd column), their ratio of the rise of the phreatic
level and the thickness of the added water layer that causes the rise is enormous (last10

column).

3.2 Shallow infiltration of small amounts of rainfall/irrigation in dry soil

Small amounts of rainfall or irrigation water on well-sorted, dry soils not always per-
colate to the subsoil but instead only wet the top soil (Youngs, 1958). Raats (1973)
explained this by the difference between the water-entry pressure at the wetting front15

and the air-entry pressure at the soil surface. His explanation can be cast within the
framework outlined above. Incomplete wetting at the wetting front leads to non-zero
contact angles and meniscus radii larger than the pore radii. The pressure jump ∆Plg
across the liquid-gas interface at wetting front depth D (m) below the soil surface is
therefore limited (Eq. 1), and the water pressure behind the front only slightly subatmo-20

spheric. For the soil surface to dry, water-filled pores must empty, and these therefore
will be completely wetted. The pressure jump across the interface is quite large, and
the water behind the drying front will be at a considerably lower pressure than the wa-
ter at the wetting front. For slow-moving fronts, the water pressure profile within the
wetted layer will be nearly hydrostatic, and Eq. (5) can be applied to the problem. The25

pressure difference from the soil water to the atmosphere at the soil surface will be
∆Plg +ρgD. According to Eq. (1) this pressure difference must be larger than the air
entry pressure difference 2γlg/r required for air to enter the soil, with r the pore radius.
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This will only occur if D>(2γlg/r−∆Plg)/ρg: the thickness of the wetted layer D must
be larger than the difference between the matric potential heads at water entry and air
entry.

3.3 Relation between large-scale average matric potential and the average
curvature of the menisci5

The total volume-averaged hydraulic potential of a body of water at equilibrium locked
in the porous medium behind gas-liquid interfaces can be calculated from Eq. (4) and
the expression for the pressure equivalent of its intrinsic phase average gravitational
potential

〈
ψg
〉

l
(Pa) (compare de Rooij, 2009):

〈
ψg
〉

l
=

∞∫
−∞

A(x3)ρgx3dx3

 ∞∫
−∞

A(x3)dx3

−1

. (9)10

This equation is more general if A(x3) is interpreted as the water-filled portion of the
horizontal cross-section at x3: it then applies to any body of subsurface water, stagnant
or mobile. But since Eq. (4) is valid for a single connected body of stagnant water,
the total intrinsic phase averaged hydraulic potential 〈ψH〉l (Pa) is subject to the more
limiting constraints of Eq. (4). Its expression is:15

〈ψH〉l = 〈ψm〉l+
〈
ψg
〉

l
= Pg−Patm±∆Plg

+

∞∫
−∞

A(x3)ρg
(
x∗3−x3

)
dx3

 ∞∫
−∞

A(x3)dx3

−1

+

∞∫
−∞

A(x3)ρgx3dx3

 ∞∫
−∞

A(x3)dx3

−1
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= Pg−Patm±∆Plg

∞∫
−∞

A(x3)ρgx∗3dx3

 ∞∫
−∞

A(x3)dx3

−1

= Pg−Patm±∆Plg+ρgx
∗
3 (10)

with +∆Plg for hydrophobic soils and −∆Plg for hydrophilic soils.
The inclusion of the water-filled cross-section A in the equations above limits the

volume integration to the liquid phase only. This is a refinement of the volume integra-5

tion of Zehe et al. (2006) who integrated over the entire subsurface volume, i.e., over
the gas, solid, and liquid phases. As discussed above and in line with Gray (2002),
integrating only over the liquid phase ensures that the upscaling operation conserves
potential energy.

Since hydrostatic equilibrium requires the hydraulic potential to be the same every-10

where, the simple expression for the volume-averaged hydraulic head expressed in the
final result of Eq. (10) is not surprising. But it does point out that under equilibrium
conditions, the gas pressure and interface curvature at any gas-liquid interface, and
its vertical position, suffice to describe the total volume-averaged hydraulic potential in
a body of subsurface water at equilibrium, but not its volume-averaged matric/pressure15

potential 〈ψm〉l, not even for a water pocket behind a single pore. This is contrary to
Zehe et al.’s (2006) hypothesis that the volume-averaged capillary pressure should re-
flect the average pressure drop across the liquid-gas interfaces in the pores at equilib-
rium. For multiple-pore systems, the situation becomes even more troublesome, since
the average pressure drop over the menisci will not only be governed by the matric po-20

tential field (see Eqs. 5 and 6), but also by the distribution of menisci. Below the top of
the capillary fringe, for instance, the number of menisci drops to zero while a significant
portion of the soil water is likely to reside in the capillary fringe; the other extreme is
the dry top layer of coarse soils, where a meniscus is present at each pendular ring
of water that retracted around a contact point of solid grains. A large population of25

menisci thus represents only a small quantity of water. The relation between average
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matric potential and average meniscus curvature is analyzed in detail for a bundle of
capillary tubes reflecting a soil water characteristic in the Appendix.

Zehe et al.’s (2006) hypothesis gains credibility under unit gradient flow conditions.
Then, the flow is driven by gravity only, and the matric potential is uniform. (Such
conditions are unlikely in saturated conditions, and we therefore disregard the pres-5

sure potential here.) In this case, the difference between the matric potential terms
in Eq. (6) is zero. The matric potential determined behind any individual interface is
representative for the entire body of water, and the average meniscus curvature is ob-
viously equal to each of the individual curvatures. This warrants the conclusion that
Zehe et al.’s (2006) hypothesis is correct for unit gradient flow conditions, but not for10

the equilibrium conditions as stipulated by the authors.
Zehe et al. (2006) formulated their assertion for a population of interfaces and large

bodies of water, and for the case of unit gradient flow that is appropriate: at the pore
scale, and even at the Darcy-scale, unit gradient flow cannot exist in heterogeneous
media because it precludes lateral flows by assuming horizontal matric potential gradi-15

ents to be zero. Thus, the redistribution of water needed to keep the local vertical flux
densities equal to the local hydraulic conductivities (a necessity if the vertical matric
potential gradient is to vanish) is not allowed. Nevertheless, unit gradient conditions
have been observed in the field at depths sufficient to dampen out fluctuations in the
boundary conditions at the soil surface. At scales slightly larger than the Darcy scale20

(1 m and beyond) unit gradient flow can safely be assumed to occur if conditions are fa-
vorable (e.g., Davidson et al., 1969; Reichardt et al., 1998): the lateral matric gradients
inevitably caused by soil heterogeneity often turn out to be relatively small owing to
the dissipative nature of matric potential gradients. Consequently, the matric potential
corresponding to the mean curvature of the menisci should be a rather good approxi-25

mation of the intrinsic phase average of the matric potential during unit gradient flow.
However, it seems unlikely that the unsaturated flow in an entire catchment is strictly
gravity-driven or at hydrostatic equilibrium.
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For more dynamical conditions and variations of flow directions within the water body
(upward, downward, lateral, water removal by plant roots, etc.), the relationship be-
tween the matric potential field within the body of water and the matric potentials just
behind its liquid-gas interfaces seems to be approximate at best. Therefore, caution
should be exercised when relating the average matric potential of large unsaturated5

water bodies to the curvatures of their menisci.

4 Summary and conclusions

The various roles of liquid-gas interfaces in the pores of soils were highlighted in view
of their effect on phenomena observable and relevant at the field and the catchment
scales, i.e., much larger than the pore scale. Their effect on water pressure and soil10

matric potential was analyzed in some detail, including the role of menisci in highly
dynamic matric/pressure potential responses of fine-textured soils to rainfall: one well-
known part of this response is the result of limited available storage in the pore space,
another part is caused by extremely rapid water pressure changes when curved inter-
faces at the soil surface are flattened. The view of menisci as one-way pressure ports15

with an offset proportional to their curvature was proposed in this context. A detailed
analysis of the relationship between the curvature of a single meniscus or a population
of menisci and the volume-averaged matric potential of a body of subsurface water did
not offer theoretical support for the direct relationship between average matric potential
and average meniscus curvature at equilibrium that was hypothesized in the literature.20

However, for strictly gravity-driven flow, a direct proportionality between average menis-
cus curvature and average matric potential is plausible.

The analysis relied on the conventional tools in use at the Darcy scale: Darcy’s Law
and the Laplace-Young Law, and often assumed conditions to be close to hydrostatic
equilibrium. Nevertheless, considerable insight was gained in the interactions between25

pore scale processes and phenomena at scales that are several orders of magnitude
larger and surpass the Darcy scale, which justifies the simplifications made. For truly
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dynamic processes, this approach may be less attractive, but a workable alternative is
currently not available.

Appendix A

Average meniscus curvature and average matric potential in a bundle5

of capillary tubes: a direct test of Zehe et al.’s (2006) hypothesis

The soil water characteristic of a soil can be converted to a distribution of pore radii
through Eq. (1). The pressure jump can be converted to a matric head h (m) :
Plg/ρg=−h. For cylindrical pores the principle radii are equal: r1=r2=r . Note that
the minus sign in the conversion implies that the soil is hydrophilic. Thus we have:10

h=−2γ
ρg

1
r
=−a

r
, (A1)

with a (m2) defined by the equation. A convenient closed-form expression of the soil
water characteristic is that of Brooks and Corey (1964):

θ−θr

θs−θr
=
(
hae

h

)λ
for h≤hae, (A2)

where θ is the volumetric water content, θr and θs are its residual and saturated values,15

respectively, hae (m) is the soil-specific air entry value, and λ is a soil-specific constant.
Note that the potentials here are expressed as energy per weight, giving the dimension
length. This clarifies the derivation below.

If hae and λ are given for a particular soil, we can conceive of a bundle of vertical cap-
illary tubes that has the same water characteristic as the soil. Such a schematization20

allows to calculate analytically the average matric potential and the average curvature
of the menisci, which permits a direct test of Zehe et al.’s (2006) hypothesis that the
average curvature of the menisci reflects the average matric potential.
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The widest tube of the population would have a radius of −ah−1
ae . Equation (A2) gives

the water remaining in the soil at a given depth after h at that depth has been lowered
from zero to its current value, i.e., all pores with a hae-value larger than h have already
emptied. By inserting Eq. (A1) into Eq. (A2) we can express the water content as
a function of the pore radius that is about to empty:5

θ−θr

θs−θr
=
(
−
hae

a
r
)λ
. (A3)

By calculating the water content for two values of r we can find the fraction of the
volume occupied by water residing in tubes with radii within the range defined by the
two values. Letting this range go to zero gives the derivative:

dθ
dr

=−(θs−θr)
λhae

a

(
−
hae

a
r
)λ−1

. (A4)10

If N (m−2) denotes the number of water-filled tubes per square meter and n (m−3) its
derivative dN/dr , Eq. (A4) provides the number of capillary tubes per square meter
with radius r by noting that dθ/dr is the fraction of the total tube area occupied by the
combined inner area of these tubes, i.e., n · πr2:

n(r)=−(θs−θr)
λhae

πar2

(
−
hae

a
r
)λ−1

=−(θs−θr)
ρgλhae

2γπr2

(
−
ρghae

2γ
r
)λ−1

. (A5)15

In a bundle of capillary tubes with its lower end submerged in a water reservoir (mim-
icking the groundwater), all tubes will contain water, with the level rising to a/r above
the water level (Eq. A1). Equation (A5) then gives the number of menisci per square
meter with curvature 2/r (m−1). The average curvature of the menisci in the entire bun-
dle of tubes can then be found by deriving the distribution function of 2/r from Eq. (A5).20

By changing variables to make y=2/r (thereby letting y (m−1) denote the meniscus
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curvature), Eq. (A5) can be written as:

n(y)=−(θs−θr)
ρgλhaey

2

8γπ

(
−
ρghae

γy

)λ−1

. (A6)

Note that the minimum curvature is −ρghae/γ and belongs to the largest capillary,
emptying at hae. The curvatures of tubes that are water filled over their entire length
(where h=−xp if we set x3 equal to zero at the soil surface) are ignored, since they5

represent water pockets in fine pores behind larger pores with menisci represented by
the larger capillaries. The arithmetic mean of the curvature 〈y〉a (m−1) then is:

〈y〉a =
−(θs−θr)

ρgλhae
8γπ

∫−ρgxp/γ

−ρghae/γ
y3
(
−ρghae

γ y−1
)λ−1

dy

−(θs−θr)
ρgλhae

8γπ

∫−ρgxp/γ

−ρghae/γ
y2
(
−ρghae

γ y−1
)λ−1

dy
, (A7)

which reduces to:

〈y〉a =

∫−ρgxp/γ

−ρghae/γ
y3
(
−ρghae

γ y−1
)λ−1

dy∫−ρgxp/γ

−ρghae/γ
y2
(
−ρghae

γ y−1
)λ−1

dy
=

[
y4

3−λ

(
−ρghae

γ y−1
)λ−1

]−ρgxp/γ

−ρghae/γ[
y3

2−λ

(
−ρghae

γ y−1
)λ−1

]−ρgxp/γ

−ρghae/γ

(A8)10

to give

〈y〉a =−
(
ρg
γ

)(
2−λ
3−λ

)(x5−λ
p −h5−λ

ae

x4−λ
p −h4−λ

ae

)
. (A9)

The radius of a meniscus in a fully wetted cylindrical capillary corresponding to this
curvature would be 2/〈y〉a. The matrix head of water just behind this meniscus is:

h
(
〈y〉a
)
=−
(

2−λ
3−λ

)(x5−λ
p −h5−λ

ae

x4−λ
p −h4−λ

ae

)
. (A10)15
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We can also calculate the average matric head of all the water in the population of
tubes. For a tube of radius r , the water rises to 2γ/ρgr m above xp, and the tube

therefore contains 2πrγ/ρg m3 of water. The total volume of water per square meter
that is stored in tubes in which the water rises to 2γ/ρgr m above xp is n(r)·2πrγ/ρg,
and that volume of water has an average matric head of −γ/ρgr m. The overall average5

matric head equals the weighted average of these average matric heads for all r , with
the weighting factor being the amount of water residing in tubes of radius r . The tubes
that are so narrow that they are filled with water all the way to the soil surface all have
an average matric head of −xp/2. The largest of these tubes has radius −2γ/ρgxp.

The average matric head of the population of tubes larger than this is:10

〈h1〉a =

∫−2γ/ρgxp

−2γ/ρghae
n(r)2πγr

ρg
−γ
ρgrdr∫−2γ/ρgxp

−2γ/ρghae
n(r)2πγr

ρg dr
. (A11)

With Eq. (A.5) this results in:

〈h1〉a = − γ
ρg

∫−2γ/ρgxp

−2γ/ρghae
r−2
(
−ρghae

2γ r
)λ−1

dr∫−2γ/ρgxp

−2γ/ρghae
r−1
(
−ρghae

2γ r
)λ−1

dr

= − γ
ρg

λ−1
λ−2

[(
−ρghae

2γ r
)λ−1

r−1
]−2γ/ρgxp

−2γ/ρghae[(
−ρghae

2γ r
)λ−1

]−2γ/ρgxp

−2γ/ρghae

, (A12)
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which gives:

〈h1〉a =
[
xp (λ−1)

2(λ−2)

]1−
(
hae
xp

)2−λ

1−
(
hae
xp

)1−λ
. (A13)

This average matric head relates to a volume of water present in those tubes in a 1 m2

area that are not entirely filled over their full length −xp. This water volume is given
by the denominator of Eq. (A11). The remaining portion of the water resides in the5

capillaries that are filled with water up to the soil surface. The volume of water per
square meter of soil stored in these capillaries with radii between 0 and −2γ/ρgxp is:

−2γ/ρgxp∫
0

−xpπr
2n(r)dr =

ρgλhae (θs−θr)xp

2γ

−2γ/ρgxp∫
0

(
−
ρghae

2γ
r
)λ−1

dr

= −(θs−θr)xp

(
hae

xp

)λ
. (A14)

To arrive at the overall average matric head 〈h〉a (m), the average matric head for10

the partially filled tubes 〈h1〉a and that for the full tubes (−xp/2) have to be averaged,
weighted by their respective portions of the total water they represent:

〈h〉a =

[
−
xp (λ−1)

2(λ−2)

]1−
(
hae
xp

)2−λ

1−
(
hae
xp

)1−λ (θs−θr)
(
λhae

λ−1

)[(
hae

xp

)λ−1

−1

]

+
x2

p

2
(θs−θr)

(
hae

xp

)λ
, (A15)
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which can be rearranged to give:

〈h〉a =
xp (θs−θr)

2

{(
λhae

λ−2

)(
hae

xp

)λ−1
[(
hae

xp

)2−λ
−1

]
+xp

(
hae

xp

)λ}
. (A16)

Clearly, Eqs. (A10) and (A16) are unequal, and for the case of a soil simplified to
a bundle of capillary tubes, the matric potential derived from the mean curvature of the
menisci does not represent the volume-averaged matric potential of the water above5

the groundwater table if the water is at hydrostatic equilibrium with a fixed groundwater
table.
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Table 1. Amount of water needed to bring the phreatic level up to the soil surface when initially
the capillary fringe extends to the soil surface, and the time needed to deliver this water during
rainfall of moderate intensity. The soils are assumed to have cylindrical pores of uniform radius.
The soil water is 15 ◦C (with corresponding density and air-water surface tension), and the
gravitational acceleration is 9.812 m s−2. For the third column, a porosity of 0.60 is assumed
for pores ≤0.1 mm, and of 0.40 for larger pores. Note that the last row gives the limiting radius
where the capillary rise equals the pore radius.

Pore radius Height of capillary Equivalent water Time needed Matric head
(mm) fringe (equals the layer needed to raise during increase divided

initial depth of the the phreatic level to 10 mm h−1 by the added
phreatic level) (m) the soil surface (mm) rainfall (s) water layer

1.00×10−2 1.499 4.00×10−3 1.44 3.75×105

3.00×10−2 0.500 1.20×10−2 4.32 4.16×104

5.00×10−2 0.300 2.00×10−2 7.20 1.50×104

0.100 0.150 4.00×10−2 14.4 3.75×103

1.00 1.50×10−2 0.267 96.0 56.2
3.872 3.872×10−3 1.03 371 3.75
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Fig. 1. Various liquid-filled vessels, with blue indicating the liquid. (A) Open at the top (B)
Closed top with a capillary tube extending upward. (C) Closed top with a capillary tube extend-
ing inward. The dashed regions indicate the amounts of liquid that need to be added to cause
equal pressure increases in the bulk of the liquid.
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Fig. 2. A hypothetical liquid-filled pore with a single exit in which the liquid-gas interface is
located at vertical position x∗3. The horizontal liquid-filled cross-section A at arbitrary elevation
x3 is also indicated.
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Fig. 3. A fine-textured soil at hydrostatic equilibrium with different phreatic levels. In the left
pane the phreatic level is at such a depth that the capillary fringe exactly reaches the soil
surface. The menisci at the soil surface are curved, but all pores are saturated. In the right
pane, just enough water was added to flatten these menisci. As a result the phreatic level
(where the water is at atmospheric pressure) moved up to the soil surface.
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